A reference human genome dataset of the BGISEQ-500 sequencer
نویسندگان
چکیده
Background BGISEQ-500 is a new desktop sequencer developed by BGI. Using DNA nanoball and combinational probe anchor synthesis developed from Complete Genomics™ sequencing technologies, it generates short reads at a large scale. Here, we present the first human whole-genome sequencing dataset of BGISEQ-500. The dataset was generated by sequencing the widely used cell line HG001 (NA12878) in two sequencing runs of paired-end 50 bp (PE50) and two sequencing runs of paired-end 100 bp (PE100). We also include examples of the raw images from the sequencer for reference. Finally, we identified variations using this dataset, estimated the accuracy of the variations, and compared to that of the variations identified from similar amounts of publicly available HiSeq2500 data. We found similar single nucleotide polymorphism (SNP) detection accuracy for the BGISEQ-500 PE100 data (false positive rate [FPR] = 0.00020%, sensitivity = 96.20%) compared to the PE150 HiSeq2500 data (FPR = 0.00017%, sensitivity = 96.60%) better SNP detection accuracy than the PE50 data (FPR = 0.0006%, sensitivity = 94.15%). But for insertions and deletions (indels), we found lower accuracy for BGISEQ-500 data (FPR = 0.00069% and 0.00067% for PE100 and PE50 respectively, sensitivity = 88.52% and 70.93%) than the HiSeq2500 data (FPR = 0.00032%, sensitivity = 96.28%). Our dataset can serve as the reference dataset, providing basic information not just for future development, but also for all research and applications based on the new sequencing platform.
منابع مشابه
Germline and somatic variant identification using BGISEQ-500 and HiSeq X Ten whole genome sequencing
Technological innovation and increased affordability have contributed to the widespread adoption of genome sequencing technologies in biomedical research. In particular large cancer research consortia have embraced next generation sequencing, and have used the technology to define the somatic mutation landscape of multiple cancer types. These studies have primarily utilised the Illumina HiSeq p...
متن کاملComparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing
Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation...
متن کاملComparative performance of the BGISEQ-500 versus Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing
Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation...
متن کاملAssessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing
Background More extensive use of metagenomic shotgun sequencing in microbiome research relies on the development of high-throughput, cost-effective sequencing. Here we present a comprehensive evaluation of the performance of the new high-throughput sequencing platform BGISEQ-500 for metagenomic shotgun sequencing and compare its performance with that of 2 Illumina platforms. Findings Using fe...
متن کاملErratum: A reference bacterial genome dataset generated on the MinIONTM portable single-molecule nanopore sequencer
[This corrects the article DOI: 10.1186/2047-217X-3-22.].
متن کامل